We’ve seen strong growth of Deep Learning techniques in the past few years. Thanks to technologies like Tensorflow and Keras, neural networks have become accessible by anybody in the world. But is Deep Learning really useful for you?
How my degree in Physics helped me become a better Data Scientist
I have a Master’s Degree cum laude in Theoretical Physics. When I started my journey into data science, I figured out how useful it is for this kind of job.
How to choose the bins of a histogram?
Histograms are a very useful tool when we want to give a quick sight to the shape of our data. However, we always have to choose the right number of bins.
How to calculate confidence intervals in Python
When we measure something, we always have to calculate the uncertainty of the result. confidence intervals are a very useful tool to calculate a range in which we can find the real value of the observable with a certain confidence.
Outlier identification using Interquartile Range
Identifying outliers is a very common task in data pre-processing. A simple method for identifying them is using the Interquartile Range.
Increase model stability using Bagging in Python
Data scientists usually search for a model that has the highest accuracy possible. However, they should focus on another term too, which is stability. In this article, I explain what it is and how to increase it using a technique called “bagging”.
Feature selection with Random Forest
Feature selection has always been a great problem in machine learning.
In this article, I’ll show how to perform feature selection using a random forest model in Python.
Is there any difference between data science and machine learning?
Data Science and machine learning are two wonderful and exciting disciplines and are a great part of our lives. Sometimes people confuse them, but they are quite different things.
Free course! Exploratory Data Analysis in Python
I’m very glad to announce that I’ve published my new free course! The topic is the Exploratory Data Analysis using …
What managers should expect from Data Scientists
Data Science has entered the world of big companies, where data is. Managers of such companies often ask things that they don’t actually need and forget to pretend the only useful things to have.